TRANSLATIONAL RESEARCH: MAKING CANCER HISTORY

Robert C. Bast, Jr., MD April 28, 2005

CANCER OCCURS FREQUENTLY

- 1 in 3 Lifetime Risk
- 1.2 million New Cases in the United States Annually
- 563,000 Deaths Annually

ARE WE WINNING THE WAR ON CANCER?

- Since 1997, more than half of patients with potentially lethal cancers have been cured.
 - Early detection
 - More effective surgery, radiotherapy and chemotherapy
- Aging of our population may erode these gains

CANCER IS A DISEASE OF AGING

- Cancer can occur at Any Age, but is Most Frequent in Older People
- Accumulated Mutations
 - Wear and Tear
 - Environmental Insults
- Evolution protects Us Until Age 30

OUR WORLD'S POPULATION IS GROWING AND AGING

Between 1998 and 2025:

- Population
 - 5.8 Billion to 8.0 Billion ($37\%\uparrow$)
- People >65 Years
 - 390 Million to 800 Million (105%)
- Life Expectancy
 - 65 Years to 73 Years (12%[↑])
- Age at Death >65

 43% to 63% (46% [↑])

GROUNDS FOR OPTIMISM

- Omic Revolution
- Computer Revolution
- Informatic Revolution

15 February 2001 Second States and States

GENE EXPRESSION ARRAY ANALYSIS

A						
			0.	00000000000 0050000000		
		0040004000 00400				
6.5.6 0.0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·					
			000000000000000000000000000000000000000			
		00-000-00 00-00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			000000000000000000000000000000000000000
						000000000000000000000000000000000000000
			6			
0.0000000000000000000000000000000000000						
000000000000000000000000000000000000000	. 0000000000 00000000000000000000000000					
		0				
						000000000000000000000000000000000000000
					000000000000	
				0 * 0 6 0 0 0 6 0 0 0 1 0 8 4 0 6 6 0 0 0 0		
		0.0000000000000000000000000000000000000				
0.0.0.0.0000	L 00000000000 000000000000000000000000	000000000000000000000000000000000000000				
				000000000 00000000000000000000000000000		
• • • • • • • • • • • • • • • • • • • •						

PROTEOMIC ANALYSIS

GROUNDS FOR OPTIMISM

- Omic Revolution
- Computer Revolution
- Informatic Revolution

CHALLENGE FOR TRANSLATIONAL RESEARCH

THE PROMISE OF MOLECULAR THERAPEUTICS

- By Studying the Alterations from Cancer to Cancer in DNA, RNA and Protein, we can Understand and Predict the Abnormal Behavior of Cancer Cells
- By Studying the Variations from Person to Person in Normal DNA, RNA and Protein we can understand and Predict the Toxic Effects of Cancer Treatment

10 100 10.00 Search and 2.52 1.00 1.00 Sec. R. C. Mint at any (A) 8.6 Part of Str AND AND 1999 100 Water 8 A 100 100.00 1.1

Bcr-Abl AS A THERAPEUTIC TARGET FOR CML

EFFICACY OF GLEEVEC IN CHRONIC MYELOGENOUS LEUKEMIA

HIEMIE	COMPLETE	COMPLETE
RESPONSE	HEME	CYTOGENETIC
	RESPONSE	RESPONSE

CHRONIC	98%	95%	28%
ACCELERATED	91%	44%	14%
BLAST CRISIS	64%	26%	6%

Intracellular signaling pathways

ELIMINATING CANCER IN THE 21st CENTURY

- Bring Together Physicians, Scientists, Staff, Ideas, Drugs, Patients, Facilities, Informatics
- Establish a Creative Environment
- Work as a Team
- Collaborate Effectively with Government and Pharma

Why is M. D. Anderson the Leading Cancer Center Today?

- Integrated free-standing center with a single mission
- 1000 outstanding scientists and physicians
- Largest number of NCI grants and grant dollars for cancer research
- Research driven multidisciplinary care of 24,715 new cancer patients each year
- Largest Therapeutic clinical trial center in the country

Patient Care Statistics

		5-Year
	<u>FY'03</u>	<u>% Growth</u>
Total Patients Served	66,241	38.8%
New Patients Served	24,411	38.0%
Admissions	19,430	22.0%
Surgeries	11,999	32.8%
Outpatient billable visits	537,822	45.9%
Radiation Procedures	252,583	80.7%
Lab Medicine Tests	6,029,953	53.9%
Diagnostic Imaging Studies	327,780	58.7%

UTMDACC Market Share – All Ages

Ambulatory Clinical Building 782,000 sf

Research

	<u>2003</u>	5 year <u>% increase</u>
Research expenditures	\$282M	100%
Federal grant dollars*	\$164M	143%
No. peer-reviewed grants	510	67%
SPORES* (Specialized Programs of Research Excellence)	9	350%
Patients enrolled in therapeutic clinical trials	12,232	200%
Training grants	24	20%

*Most NCI grants (208), NCI grant dollars (\$98.4M) and SPORES of any academic institution

North Campus

South Campus UT Research Park

Emerging Research Theme #1: Molecular Diagnostics

- Identify markers that detect cancer in an individual and predict response to treatment.
 - New Program in Molecular Markers
 - Genomics and Proteomics Core Laboratories
 - Annotated Tissue Banks
 - New Program in Molecular Imaging

EARLY DIAGNOSIS Ovarian Cancer Bar Code in Serum

PRINCIPLE Analyze proteins Patterns 400 controls 200 patients **OVER 95% OF CANCERS DETECTED AT CURABLE STAGE**

Serum Protein Pattern Diagnostics

The University of Texas M.D. Anderson Cancer Center South Campus Research Buildings One and Two and

Conference Center

Molecular Imaging Research

- Direct Translation from Laboratory to Clinic
- Animal Imaging Facilities
- Diagnostic Imaging Center

We can predict how well drugs will work by monitoring the function of their target (KIT and GIST) Functional Imaging

Before

8 days

24 weeks

Future Diagnostic – Therapeutic Paradigm

2-3 days

PET/CTImaging Therapy "A" Therapy "A" The Pour Constant Therapy "B" Therapy "B"

Center for Advanced Biomedical Imaging Research South Campus Building III

- Collaboration by UT MD Anderson, UT Health Science Center, General Electric Medical Systems and State of Texas
- PET scanning, MRI and other diagnostic imaging modalities
- Creation of Agents to image Genes, Proteins and Molecular Pathways; Radiochemistry to Label Reagents; Animal Imaging; Clinical Investigation in Patients

Emerging Research Theme #2: Molecular Therapeutics

- Develop new therapies targeting genes that cause cancer and molecular pathways that promote cancer cell proliferation, survival and metastasis.
 - Clinical and Translational Research Center
 - Pharmaceutical Development Center
 - Animal Toxicology/GLP Facility
 - Molecular Monitoring Laboratory
 - Re-engineering of Technology Transfer
 - Strategic Alliances with Pharma

MDACC-Pharma Collaborations

- Speed New Drug Development
- Pre-clinical as well as Clinical Research
- Validate "Targets"
- **Develop Molecular Diagnostics**
- Design "Intelligent Trials" with Biological Endpoints
- Identify Biomarkers for Response to Individualize Treatment

Emerging Research Theme #3: Microenvironment of Cancer

- Understand the critical role of surrounding normal tissues in promoting cancer growth, e.g., blood vessels, growth factors.
 - Metastasis Center
 - Targeting normal tissue
 - Anti-vascular Therapy

Smith Research Building

Emerging Research Theme #4: Immunotherapy

- Create new immunological approaches to the treatment of cancer
- Characterize the cells, antibodies and cytokines involved.
 - New Chairs of Immunology, Melanoma and Lymphoma/Myeloma
 - New Center for Cancer Immunology Research
 - GMP facility for stem cell and immunotherapy

Center for Cancer Immunology Research South Campus Research Building I

Proton Therapy Center 85,000 sf

South Campus Initiative

Emerging Research Theme #5: Stem Cell Research

- Function and Definition of Blood and Cancer Stem Cells
 - Largest blood and marrow stem cell clinical program.
 - GSBS Program in Genes and Development
 - Genetically-engineered mouse models
 - Research on DNA/chromatin modification and regulation of transcription.

George and Cynthia Mitchell BSRB 486,000 sf

Emerging Research Theme #6: Cancer Prevention

- Identify genetic, environmental and lifestyle factors that determine cancer risk
- Find therapeutic agents and behavioral modifications that can prevent cancer or reverse precancerous conditions.
 - Division of Cancer Prevention: 10th year
 - Smoking prevention programs
 - New Department of Health Disparities Research
 - Mexican American Cohort Study
 - Chemoprevention clinical trials

Cancer Prevention Building

391,000 sf

Emerging Research Theme #7: Organ Site Research

- Understand cancer that starts in Different Organs, Exploring new Diagnostic and Therapeutic Approaches
 - Promote collaborative research and grant support targeting specific cancers.
 - 9 SPOREs (Specialized Program of Research Excellence)
 - Establish priorities to accept patients for whom we can provide unique care or innovative clinical trials
 - Explore differences in pediatric and adult cancers.
 - Expand National and International Collaborations

ELIMINATING CANCER IN THE 21st CENTURY

- Analyze Enormous Amounts of Complex Data
- Link Laboratory Data with Clinical Outcomes
- Develop Reliable Models that Predict the Behavior of Networks
- Develop Team Science

THE UNIVERSITY OF TEXAS MDANDERSON CANCERCENTER Making Cancer History®